In the last 12-18 months we have seen many different architectures emerge from many different vendors who claim to be offering ‘the modern data architecture solution’ for the data-driven enterprise. These range from streaming data platforms to data lakes, to cloud data warehouses supporting structured, semi-structured and unstructured data, cloud data warehouses supporting external tables and federated query processing, lakehouses, data fabric, and federated query platforms offering virtual views of data and virtual data products on data in data lakes and lakehouses. In addition, all of these vendor architectures are claiming to support the building of data products in a data mesh. It’s not surprising therefore, that customers are confused as to which option to choose.
However, in 2023, key changes have emerged including much broader support for open table formats such as Apache Iceberg, Apache Hudi and Delta Lake in many other vendor data platforms. In addition, we have seen significant new milestones in extending the ISO SQL Standard to support new kinds of analytics in general purpose SQL. Also, AI has also advanced to work across any type of data.
The key question is what does this all mean for data management? What is the impact of this on analytical data platforms and what does it mean for customers? This session looks at this evolution and helps customers realise the potential of what’s now possible and how they can exploit it for competitive advantage.